MEMORANDUM

Winter Semester 2018

To:	ISE 4469 /5469 Students and SECS Faculty	
From:	Sankar Sengupta, Professor ISE Department. Office: 502D EC, (248)-370-2218 (O) (248)- 656- 5191 (H), <u>sengupta@oakland.edu</u> Office Hours: M and W 5:30 P.M6:30 P.M. or by appointment.	
SUBJECT:	Course Outline and Operating Procedure for ISE 4469/5469- Computer Simulation in Engineering	
Text:Discrete Event Simulation: Theory and ApplicISE Department. Oakland University, Rochester,		Application by Sankar Sengupta,. ester, MI
	 Recommended Reading: 1. Simulation Modeling and Analysis, by Averill M. Law and W. David Kelton, A McGraw- Hill Publication. 2. Handbook of Simulation, Principles, Methodology, Advances, Applications and Practice, edited by Jerry Banks, A John Wiley publication. 	
COURSE OBJE	ECTIVES: On successful completion of this Following:	course a student should be able to do the
• • •	Recognize the strengths and the weaknesses of discrete event stochastic simulation Models (a,e), Select simulation as modeling tool for a real world problem (e), List and carry out the steps of a simulation study (e), Carry out optimization based on a simulation model (a,k), Be familiar with at least one commercially available simulation software (k).	
Tentative Course 1. Fun 3. Gen 5. Veri 7. Intro 9. Opti	e Outline: damentals of simulation as a modeling tool, eration of U (0,1) random numbers, fication and validation of models, oduction to Queuing Theory, mization based on simulation,	 Modeling Input data, Generation of random variates, Output Analyses, Discussion of real world applications, Agent Based Simulation.
HOMEWORK:	Homework will be assigned, graded and discussed in class. No homework will be accepted late without prior permission of the instructor. Late homework will carry a penalty to be decided by the instructor. The course grade will be decided based on the following weighting factors: mid-term 25%, final test 30%, homework 20% and a class project 25%. Students are encouraged to bring real world problems and discuss them in class. The mid-term may be assigned as a take home test.	
ATTENDANCE PC	DLICY: None, but it is expected that a student Semester. A poor attendance usually 1	will attend every class held during the eads to poor performance in the course.

ACADEMIC CONDUCT: Unless specified otherwise, each student must submit individual unaided work With documentation of sources used. A description of each program outcome is included next in the handout. This will help the students to understand how the course objectives relate to the program outcomes.

The list of ABET Program Outcomes (a through k)

- (a) an ability to apply knowledge of mathematics, science and engineering
- (b) an ability to design and conduct experiments, as well as to analyze and interpret data
- (c) an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health, safety, manufactured ability, sustainability
- (d) an ability to function on multi-disciplinary teams
- (e) an ability to identify, formulate, and solve engineering problems
- (f) an understanding of professional and ethical responsibility
- (g) an ability to communicate effectively
- (h) the broad education necessary to understand the impact of engineering solutions in a global, economical, environmental, and societal context
- (i) a recognition of the need for, and an ability to engage in life-long learning
- (j) a knowledge of contemporary issues
- (k) an ability to use the techniques, skills and modern engineering tools necessary for engineering practice.