Introduction

Applied mechanics and mathematics utilized in vehicle modeling Vehicle axis systems, centre of gravity, loads, inertias

Vehicle Dynamics

Longitudinal Dynamics

Dynamic axle loads at acceleration or deceleration

Traction limited acceleration, climbing, traction control

Traction limited braking, brake stability

Brake forces distribution

Vehicle resistances and engine output requirements

Vertical Dynamics

Vibration, noise classification, propagation and phenomenon's

Simple vertical dynamics modeling

Road excitation

Suspension springing and shock absorbing

Lateral Dynamics

Lateral acceleration, forces and slip angle

Low speed cornering

Vehicle under-steering, over-steering and self steering

Vehicle stationary and non-stationary cornering, line change

Lateral dynamics modeling

Interaction between longitudinal, vertical and lateral vehicle dynamics

3-Dimensional interaction

Vehicle pitch and roll motions and General considerations

Vertical Force Variations

Braking, accelerating while cornering, braking on split μ surface Vehicle Dynamics Target Conflicts

Chassis systems in vehicle dynamics

Suspension design, classification, kinematics and elastokinematics Introduction to brake systems, and importance in vehicle dynamics Introduction to tire as major system in vehicle dynamics

Visit to Continental NA Development Center in Auburn Hills